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In previous papers by the author [l] and [ 23, solutions were obtained for 
certain elastic-plastic problems and for problems on the local buckling ofa 
membrane. It was found that these solutions hold only up to a certain value 
of the load parameter (at which a cusp appears on the unknown boundary). It 
should be noted that solutions were sought in a class of functions (stresses) 
which were bounded evervwhere in the elastic region, including the unknown 
boundary (here we do no't take into account the inevitable sin@;ularities of 
the functions caused by the presence of a cusp on the known boundary, as is 
the case, for example, in the problem of buckling of a membrane). 

In what follows we shall derive solutions to the two problems indicated 
in a class of functions (stresses) which are unbounded at certain points on 
the unknown boundary corresponding to the cusps in the first solution. The 
solutions obtained are a sequel to those derived in references [l] and [Z] 
for large values of the load parameter and coincide with them only for one 
value of the load parameter. Above this value the solutions given in papers 
[l] and [2] no longer hold. Accordin; to the solutions found, there always 
exists a cusp on the contour of the unknown boundary. 

Two examples will be used to illustrate a sufficiently general method by 
which the two solutions can be combined to form a unique solution validover 
the whole i.ange of parameters. 

1. The rlsrtio-plrstlo problem for L plate with a olroular orifioe. 
1) Consider the elastic-plastic problem for an infinite plate with a 

circular orifice of radius R under a uniform state of stress 

On the contour of the orifice there is applied a constant normal stress 
n'r = p with the tangential stress 7rB zero (in polar coordinates r and 6). 
As a plasticity condition in the plastic region we accept the Treaca - St. 
Venant condition. We assume that OI<p<o,, where 0, is the plasticity con- 
stant. The formulation of the problem and the notation are the Same as in 
[21. 

In the parametric plane of c the boundary-value problem may be written 
in the form [2] 
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9, (5) = “I4 b,” + $9 + 0 m, 
* (51 = ‘12 Cauw - u,“) + 0 K-% 

Consider functional Equation 

w (5) = 0 (Cl 
for 5 --too 

From formula (3.13) in [2] the solution to this equation is 

where ~(6) is given by the solution to Dlrichlet's problem (3.14) for the 
exterior of the circle 161 > 1 

ROI- 
2 Rerp 63 = op + 

QJ I/Ga 
Cl h - 3 fa (ys+:,,zc*- ca+iEl/zc, ) for I g 1 = 1 

w 

In order to be precise we shall assume always that ey “O>CpSO , and we 
shall seek a solution to Dirichlet's boundary-value problem (1.2) in a class 
of functions which have poles at the points C =il. Since there is no con- 
centrated force at corresponding points on the unknown contour of the physical 
plane of .s it follows that at the points 6 =*l condition 

0’ (j, 1) = 0 (1.3) 

must be satisfied. 

This condition means that the as yet unknown dividing line between the 
elastic and plastic regions always has cusps at points corresponding to 
6 =il. 

The stresses inthe elastic region In the neighborhood of a cusp have a sin- 
gularity of the type llfi. 
condition (1.3) that 

Taking into account Formula (1.1) we find from 

zc, = 3c, 0.4) 

It can be shown that the solution to Dirichlet's problem (1.2) in the class 
of functions indicated, which at present does not satisfy the condition at 
infinity, is of the form 

cp (5) =J+-$ 
3R @ - ma's) 1 9% (P- ~~1 

1&., ,ws+&+ 
32% 

(1.5) 

where A is a real constant. In order to find the constants a0 and A we have 
two conditions at infinity 

Making use of Formulas (1.1),(1.5) and (1.6) we nhtain 
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The functions ~(6) and c(6) may be written in the form 

We can write the equation of the contour separating the elastic and Pla::- 
tic regions in the parametric form 

.‘ (1) == 'isco (5 cos 2 + l/s cos 3t) 

?/ (t) 7.: llaco (sin t - l/s sin 3t) 

We see that the dividing contour 
between the elastic and plastic regions 
for all values of the load parameters 
remains similar to the contour of the 
solution of [2] for a critical value 
of the parameter a = 'I?; if thisvalue 
is exceeded the solution of [2] no 
long,r has any physical meaning. The 
solution of (1.5),(1.7) and (1.8) 
exists for all values of the load 
Parameters which Satisfy the condition 
that the plastic zone completely sur- 
rounds the circular orifice 

2. Let us now consider the question of the existence and uniquene‘,:: a:,; 
a solution to the Initial elastic-plastic problem. We shall first find t111, 
regions of the existence of the solution [2] and of the solution of (1.5), 
(1.7) ag,(l.8). These solutions depend on three load parameters p* = p/as, 
q = u,$ o8 and aS = sY" /ofi which form a three-dimensional load-parameter 
space. For the sake of simplicity and clearness we Shall set p*= 0, So that 
the region of variation of the two load parameters oI and o2 will be the 
interior of a triangle with corners at the points (O,O), (0,l) and (1,1) 111 
the (1~0, plane (see the figure) (in consequence of the ineqUality 

The regions of existence oL p the solutions is indicated in the figurt:, a:' 
follows: existence of the solution of (1.51, (1.7) and (1.8) is denoted by 
horizontal hatching and‘the region of existence of the solution of 121 1:. 

denoted by vertical hatching. The straight line ABHE gives the load Para- 
meters for which the dividing line between the elastic and plastic regiorl;' 
of the solution of (1.5), (1.7) and (1.8) touches the circular orifice. 
Equation of this line has the form 

210, - 33q + 4 == 0 (1.11) 

Equation of the straight line AGP is a, - oI = 0. The curve GBCZ, gives 

the load parameters for which the contour separating the elastic and plastic 
regions, In accordance with the solution of [2], touches the circular orifice. 
Equation of this curve is 

(l.1.X) 

The ,traight line CHF gives the load parameters for which a CUSP appears 
on the dividing contour between the elastic and plastic zones in the SolUtion 
of [2]. Its Equation is 

310, - lib1 - 20 L-=- 0 (LlY) 
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It can be seen from the figure that in the regions 1, 3 and 4 the solution 
is unique and that in the region 2 there are two solutions. It can be shown 
that with an a priori assumption of the uniqueness of the solution to the 
functional equation, single-sheeted solutions to the Initial problem in the 
class of functions (stresses) which are almost everywhere bounded, would no 
longer exist. We shall show that in this case the solutions obtained must 
be combined and the question of uniqueness solved. 

Definition. We define the solution to the elastic-plastic prob- 
lem as correct if it is a continuous function of all the parameters of the 
problem almost everywhere within the range of varlatlon of the independent 
variables x and y. 

We require the solution to the initial elastic-plastic problem to be cor- 
rect. The preceding two solutions are both continuous functions of the para- 
meters everywhere within the region of existence of the solution in the 01,02 
plane. We must now check the continuity of the solutions on the boundaries 
of the region of existence. We ~~ediately find that in the regions I and 2 
the solution (1.5), (1.7) and (1.8) is incorrect, since on the straight line 
AGF, when e1 = a2, it does not transform to the familiar axisymmetric solu- 
tion of the elastic-plastic problem, From this point of view the solution 
of [2] is correct everywhere within the regions of existence 2 and 3, since 
when oi = oa it transforms continuously into an axisymmetric solution. How- 
ever, the question of the continuity of the solution of [2] for the elastlc- 
plastic problem on the boundary GBC remains open, since no solution of the 
elastic-plastic problem is known when the plastic zone only partially sur- 
rounds the circular orifice. Let us make the a priori assumption that the 
solution of [2] is continuous on the boundary GBCH and that the solution 
(:,5), (1.7) and (1.8) is continuous on the se ment xE. 
that on the segmentXF.the solution of (1.5), ? 1.7) 

it is easy to verify 
and (1.8) coincides with 

the solution of [2]. From this following Theorem my be stated. 

Theorem 1. A solution of the elastic-plast.ic problem based on the 
above a *priori assumption exists in the regions 2, 3 and 4 of the variation, 
of the load parameters and is unique in the class of correct, single-sheeted 
solutions, bounded almost everywhere; in regions 2 and 3 the solution (bound- 
ed everywhere) is given by Formulas4.n [2] and in region 4 the solution 
(bounded almost everywhere) Is given'by Formulas (1.51, (1.7) and (1.8). 

We note that the mathematical assumption on the infiniteneSS of stresses 
in the neighborhood of the cusp is explained physically by the existence of 
statically indeterminable plastic zones In this neighborhood. 

This factor if a defect of the present solution and in this sense it is 
an approximate solution; however, it does at least have a definite physical 
meaning within the region 4 at points sufficiently ClOSe to the Segment FF. 

Moreover. the conceot of correctness of the solutjon and the method of corn-- 
bining the solutions are apparently of a completely general nature. as will 
be shown from the following example from a different field. 

2. Loarl buokling ct L membrme oontrlnlng L slot. Suppose that an in- 
finite membrane having a slot (-I, +I) which is free from loading is subject- 
ed to a uniform field of tensile stresses as a result of which a zone of 
local buckling occurs in the membrane close to the slot. The general formu- 
lation of the problem of local buckling of membranes and the solution of 
certain specific problems are given in [l]. 

The'boundary conditions on the unknown contour L separating the buckled 
and unbuckled zones may be written in the form Cl] 

Re Q, (2) = 0, 3.x)' (2) 9 UT (z) = 0 on L 

Here we shall use the notation as in [l] + According to [I], on the ex- 
terior ofa single cut along the real axis of the parametric plane of 6 we 
have boundary-value problem 
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The function (p(6) is unbounded, and the functions o(6) and ~(6) are bound- 
ed in the vicinity of the ends of the se ment 

7 
6 = &l. We seek solution to 

Dirichlet's problem for the function ~(6 in a class of functions unbounded 
at the point 6 = 0, which is the image of the point of maximum displacement 
in the.buckled region of the membrane (and which develops into a cusp in the 
solution of Cl], after which this solution no longer holds). We find that 

-- 
45" - 1 = F; + 0 (L-1) for 5 -+oo (2.2) 

rhere j' is real constant. 

The function ~(6) and ~(6) are determined by Formulas in [i] 

w(~f=(-d~2-Br,~-E)1/5a--++At~+BSa+C5+~ (2.3) 

x(g)=(-Ar;a-B<+E)Jq+- l-Ap--Bp--CI,-D 

For finding the unknown real constants A, B, C, D, E and .r we have the 
following conditions: 

1) the conditions of absence of concentrated forces at points in the 
a plane which are images of the points 5 = 0 and 5 = il 

2) the condition of correspondence of the points ~(51) = Itl; 

3) the condition of infinity ~(~)-+1/4(uyoD- @,") for 5 -+oO. 

From these conditions we obtain 

B=C=D===O, A=E=& F = ‘I, (ugm - 5~~~) 

Finally, we can write solution in the form 

(2.4) 

(2.5) 

The boundary of the buckled zone for all values of the 10% parameters 
0.X m and uym is an astroid r'la + ,;i' =I 1'1". Thus, if (I co <h, we have two 
different solutions to the probiem: the solution of'~l] and solutlon (2.5). 
It can be shown that no more one-sheeted solutions, bounded almost every- 
where within the region of variation of x and y, exist. We note that the 
condition of one-sheetedness is essential, since it can be shown,forexample, 
that there exists a solution (not one-sheeted, however) to the present prob- 
lemlna class of functions (stresses) bounded at the ends of -the segment 
(-1, +I) and Unbounded at the cusp which is the image of the point C = 0. 
We require the solution to the initial problem of local buckling to be cor- 
rect, i.e. to depend continuously on the parameters almost everywhere within 
the region of variation of the variables x and y. 

In this sense solution (2.5) is incorrect, since If bYm = uXm it does not 
become the solution to the corresponding elastic problem (for this Value of 
the load parameters buckling does not occur). On the contrary, solution of 
[l], as can easily be verified, is correct over the whole region of its ex- 
istence if 0,"<u,,@"<5sx ZO.At the same time the solution of [I] and that 
given by (2.5) coincide it 
Theorem. 

ol,a= 5~~0~. From this we may state following 
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Theorem 2. The solution of the initial problem exists and is unique 
in the class of correct, one-sheeted solutions. bounded almost everywhere; 
in the region of variation of parameters o o"<u~~~5~roo this solution is 
iven by Formulas in [l] and in the remaidng region 5o,c~<o,,m by Formulas 
2.5). 

We note that the mathematical assumntion that the (comoressive) stresses 
are infinite in the neighborhood of thk cusp (6 = 0) in the zone of buckling 
is explained physically by the fact that any membrane has some (although 
perhaps, extremely small) flexural rigidity which causes the high stresses 
necessary for the loss of stability of a very short element of the membrane 
in the neighborhood of the cusp. 
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