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In previous papers by che author {1] and [ 2], solutions were obtained for
certain elastlc-plastic problems and for problems on the local buckling of a
membrane. It was found that these solutions heold only up to a certain value
of the load parameter {at which a cusp appears on the unknown boundary). It
should be noted that solutions were sought in a class of functions (stresses)
which were bounded everywhere in the elastic reglon, including the unknown
boundary {here we do not take into account the inevitable singularitles of
the functions caused by the presence of a cusp on the known boundary, as is
the case, for example, in the problem of buckling of a membrane) .

In what follows we shall derive solutions to the two problems indicated
in a class of functions (stresses) whlch are unbounded at certalin polnts on
the unknown boundary corresponding to the cusps in the first solution. The
solutions obtained are a sequel to those derived in references [1] and [ 2]
for large values of the load parameter and coincide with them only for one
value of the load parameter. Above this value the solutions gilven in papers
[1] and [2] no longer hold. Accordins; te the solutlions found, there always
exlsts a cusp on the contour of the unknown boundary.

Two examples will be used to illustrate a sufficiently general method by
which the two solutions can be combired to form a unigue solution valld over
the whole range of parameters.

1. The elastic-plastic problem for & plate with a circular orifioe.

1) Consider the elastic-plastic problem for an infinite plate with a
circular orifice of radius » under a uniform state of stress

o, = 0., o, =@a %, Ty =0

on the contour of the orifice there 1s applled a constant normal stress
o, = p with the tangential stress 7.5 zero {in polar coordinates r and 5.
As a plasticity condition in the plastic region we accept the Tresca — St.
Venant condition. We assume that 0<® p < o, where o, is the plasticity con-
stant. The formulation of the problem and the notatlon are the same as in
fal.

In the parametric plane of { the boundary-value problem may be written
in the form [ 2]
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From formula (3.13) in [2] the solution to this equation is
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where o{¢) is given by the solution to Dirichlet's problem (3.14} for the
exterior of the circle (| > 1

R(p—oa) Voo z( 1 1 ) for [ L] =1
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In order to be precise we shall assume always that °y°°‘>‘“‘°'x 50, and we
shall seek a solutlon to Dirichlet's boundary-value problem (1.2} in a class
of functions which have poles at the points {=+1. Since there is no con-

centrated force at corresponding polnts on the unknown contour of the physical
plane of z it follows that at the points ¢ =+1 condition

@ (1) =0 (1.3)

2 Reg (§) =0, +

must be satisfied.

This condition means that the as yet unknown dividing line between the
elastlic and plastic regions always has cusps at points corresponding to
¢ =x1.

The stresses in the elastic region in the neighborhood of a cusp have a sin-~

gularity of the type 1//z. Taking into account Formula (1.1) we find from
condition (1.3} that

20y = 3¢, (4.4

It can be shown that the solution to Dirichlet's problem (1.2} in the class
of functions indlcated, which at present does not satisfy the condition at
infinity, is of the form

244 3R{p—9o) 4 1 9R (p — o,)
‘P(Qz'Agzi 1 16¢, = §2+1/3+Tﬂs+w§§ge—“_ (1.5)

where 4 1is a real constant. In order to find the constants ¢, and 4 we have
two conditions at infinity

@) = Ylo,"+ 0,  $(O) >3, —0) for [>00 (1.6)
Making use of Formulas (1.1),(1.5) and (1.6) we ~btain
6R (0, — P) 37 17 o 5
0= 4o, + 70, — 115,% A=§7%" — 6% 16 % a7
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The functions w(¢) and y(¢) may be written in the form

Y L2 Re,—p @+ ¢ @ -1
o) = 73 (22 -+ ‘3—) > P (L) = g (L2 - 158 - ;r‘(‘(:)‘ (o] (T\} {1.8)

We can write the equation of the contour separating the elastic and placs-
tic regions in the parametric form

% »x S
rof e o (1) = Yseo (5 c0s ¢ - 1/, cos 3)
\‘ﬁ y (&) == Vyeo (sin £ — Y, sin 31)
i O << 2n) (1.9)
z

We see that the dividing contour
between the elastic and plastic reglons
for all values of the load parameters
remains similar to the contour of the
solution of [ 2] for a critical value
of the parameter ¢ = */,; if this value
is exceeded the solution of [2] no
long r has any physical meaning. The
solution of (1.5),(1.7) and (1.8)
exists for all values of the load
parameters which satisfy the condition

Fig. 1 that the plastic zone completely sur-
f rounds the circular orifice
0 Is] [
« / hey > 9R (1.10)
2, Let us now consider the guestion of the existence and unigucneiy ol

a solution to the initial elastic-plastic problem. We shall first {ind the
regions of the exlstence of the solution [2] and of the solution of (1.5),
(1.7) apd (1.8). These sglutions depend on three load parameters p* = p/aq_,
oy = 0,0 /6, and 6, = 6,” /6, which form a three-dimensional load-parameter
space. For the sake of Simplicity and clearness we shall set p*= 0, so that
the region of variation of the two load parameters o, and o, will be the
interior of a trlangle with cornmers at the points {0,0), (0,1) and (1,1) in
the ¢,0, plane (see the figure) {in consequence of the inegquallty

0,306,°>30,7>50).

The regions of existence of the solutions is indicated 1in the figure ar
follows: existence of the solution of {1.5), (1.7) and {1.8) is denoted by
horizontal hatching and the region of existence of the solution of [2] ir
denoted by vertical hatching. The straight line ABRHE glves the load para-
meters for which the dividing line between the elastic and plastic regionr
of the solution of {1.5), (1.7) and (1.8) touches the circular orifice.
Equation of thils line has the form

210y — 330, + 4 = 0 (111

Equation of the straight line AGF is o, -~ 0; = 0. The curve GRCD gilves
the load parameters for whlch the contour separating the elastic and plastic
regions, in accordance with the solution of [ 2], touches the circular orifice.
Equation of this curve i1s

(01‘}‘62‘"1)3 oy - 6 — 14 Gy — Oy

3— oy— 6y J—0o— 062 2-— 0y 0y

(1.12)

The otraight line CgF gives the load parameters for which & cusp appears
on the dividing contour between the elastic and plastic zones in the solution
of [2]. Its Equation is

370, — 176, — 20 = 0 (1.13)
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It can be seen from the figure that in the regions 1, 3 and 4 the solution
is unique and that in the region 2 there are two solutions. It can be shown
that with an a priori assumption of the uniqueness of the solution to the
functional equation, single-sheeted solutions to the initial problem in the
class of functions (stresses) which are almost everywhere bounded, would no
longer exist, We shall show that in thls case the solutions obtained must
be combined and the question of uniqueness solved.

Definitilon . We define the solution to the elastic-plastic prob-
lem as correct if it 1s a continucus function of all the parameters of the
problem almost everywhere within the range of variation of the independent
variables x and y.

We require the solution to the initial elastic-plastic problem to be cor-
rect. The preceding two soclutions are both continuous functions of the para-
meters everywhere within the region of exlstence of the solution in the o,,0,
plane. We must now check the continulty of the solutions on the boundaries
of the region of existence. We immedlately find that in the regions 1 and 2
the solution {1.5), (1.7) and {1.8) is incorrect, since on the straight line
AGF, when o, = 0,, it does not transform to the familiar axisymmetrlic solu-
tlon of the elastlie~plastic problem. From this point of view the solution
of [2] 1s correct everywhere within the regions of existence 2 and 3, since
when o, = 0, it transforms continuously into an axisymmetric solution. How-
ever, the question of the continuity of the solution of [2] for the elastic~-
plastic problem on the boundary GFC remalns open, since no solution of the
elastic-plastic problem 1s known when the plastic zone only partially sur-
rounds the circular orifice. Let us make the a prlori assumption that the
solution of [ 2] is continuous on the boundary ¢BCH¥ and that the solution
{1.5), (1.7) and (1.8) is continuous on the segment gF. It 1s easy to verify
that on the segment #F-the solution of (1.5), %1.7) and {1.8) coincides with
the solution of [2]. From this following Theorem my be stated.

Theorem 1. A solution of the elastic-plastic problem based on the
above a priori assumption exists in the regions 2, 3 and % of the variation
of the load parameters and is unique in the class of correct, single-sheeted
solutions, bounded almost everywhere; in regions 2 and 3 the solution (bound~
ed everywhere) is given by Formulas-in [2] and in reglon 4 the solution
(bounded almost everywhere) is given by Formulas (1.5), (1.7) and (1.8).

We note that the mathematical assumption on the infiniteness of dtresses
in the neighborhood of the cusp is explained physically by the existence of
statically indeterminable plastlec zones in this neighborhood.

This factor if a defect of the present solution and in thils sense 1t is
an approximate solutlion; however, it does at least have a definite physical
meaning within the region 4 at points sufficiently close to the segment fpr.
Moreover, the concept of correctness of the solution and the method of com~
bining the solutions are apparently of a completely general nature. as will
be shown from the following example from a different field.

2. Looal buokling of & memdrane oontaining a& slot. Suppose that an in-
finlte membrane having a slot {—7, +7) which is free from lcading is subject-
ed to a uniform fleld of tensile stresses as a result of which a zone of
local buckling cccurs in the membrane close to the slot. The general formu-
lation of the problem of local buckling of membranes and the solution of
certain specific problems are given in [1].

The’ boundary conditlions on the unknown contour 7 separating the buckled
and unbuckled zones may be written in the form [1]

Red (z) =0, z0' (54 ¥(2)=0 onlkL
D () =1 (0, ° + 0,0+ 0, ¥()=1(o,"— o)+ 0" for s+
Here we shall use the notation as in [1]. According to [1], on the ex-

terior of & single cut along the real axis of the parametric plane of { we
have boundary-value problem
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Reg () =0, e@Q+-x@=0 2.4
PO =Y o+, )+ 0D, o=0@, xOD=0E for { —~o0

The function (¢) is unbounded, and the functions w(() and yx(¢) are bound-
ed 1in the vicinity of the ends of the segment { = +1. We seek scolutlon to
Dirichlet's problem for the function @{{) in a class of functions unbounded
at the point { = 0, which 1is the image of the point of maximum dlsplacement
in the .buckled region of the membrane (and which develops intoc a cusp in the
solution of [1], after which this solution no longer holds). We find that

(6,2 +0,°) ¢ + F
gve—-1
there F 1s real constant.
The functlon w{({) and x{{) are determined by Formulas in [1]

0@ =(—AP—BL+E) VP —1+ 40+ B+ CL+D @3)
X () =(—AP— B+ E) VE—1—A40—BP—C{—D

For finding the unknown real constants 4, B, ¢, I, £ and 7 we have the
following conditions:

@)= VE—1=¢+0(&"Y for {00 (2.2)

1) the conditions of absence of concentrated forces at points in the
z plane which are images of the points { = 0O and { = 1

2) the condition of correspondence of the points w(xl) = +];
3) the condition of infinity % (§) =13 (6, — 06,°) for § > co.
From these conditions we obtain

B=C=D=0, A=FE-=1 lelg(cym——-.icxw) (2.4)
Finally, we can write solution in the form

4 (ax°° 4 Guoo) g2+ cry°° — 5"3:00

rO=10—-VP—1—1 o@Q=10—-Vi—-1+1

(2.5)

The boundary of the buck}ed zone for all values of the logg parameters
0, and 0,® is an astrold g 4 y/s = [’ Thus, if ¢ <56, we have two
different solutions to the problem: the solution ofuLlj and solution (2.5).
It can be shown that no more one-sheeted solutions, bounded almost every-
where within the regilon of variation of x and y, exlst. We note that the
condition of one-sheetedness is essential, since it can be shown, for example,
that there exists a solution (not one-sheeted, however) to the present prob-
lem in a class of functions {stresses) bounded at the ends of the segment
{—1, +1) and unbounded at the cusp which is the image of the point ¢ = O.

We require the solution to the initial problem of local buckling tro be cor-
rect, 1.e. to depend continuously on the parameters almost everywhere within
the reglon of variation of the variables x and y.

In this sense solution (2.5) is incorrect, since 1f o= 0. 1t does not
become the solution to the corresponding elastic problem (for this value of
the load parameters buckling does not occur). On the contrary, solution of
[1], as can eggily be verifled, is correct over the whole region of 1ts ex-
istence 1f 6, € ¢,% < bs O At the same time the solution of [1] and that
given by (2.5) coancide it cy«>==50£w, From this we may state following
Theorem.
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Theorem 2. The solution of the initial prablem exlsts and 1s unique
in the class of correct, one-sheeted solutions. bounded almost everywhere;
in the region of variation of parameters o “’éfcy“’<f5u;” this solution 1s
iven by Formulas in [1] and in the remainfng region 56x“’<:°fn by Formulas

2.5).

We note that the mathematical assumption that the {compressive) stresses
are infinite in the neighborhood of the cusp {{ = 0) in the zone of buckling
is explained physically by the fact that any membrane has some {although
perhaps, extremely small) flexural rigldity which causes the high stresses
necessary for the loss of stabillity of a very short element of the membrane
in the neighborhood of the cusp.
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